Structural characterization of the fission yeast U5.U2/U6 spliceosome complex.

نویسندگان

  • Melanie D Ohi
  • Liping Ren
  • Joseph S Wall
  • Kathleen L Gould
  • Thomas Walz
چکیده

The spliceosome is a dynamic macromolecular machine that catalyzes the excision of introns from pre-mRNA. The megadalton-sized spliceosome is composed of four small nuclear RNPs and additional pre-mRNA splicing factors. The formation of an active spliceosome involves a series of regulated steps that requires the assembly and disassembly of large multiprotein/RNA complexes. The dynamic nature of the pre-mRNA splicing reaction has hampered progress in analyzing the structure of spliceosomal complexes. We have used cryo-electron microscopy to produce a 29-A density map of a stable 37S spliceosomal complex from the genetically tractable fission yeast, Schizosaccharomyces pombe. Containing the U2, U5, and U6 snRNAs, pre-mRNA splicing intermediates, U2 and U5 snRNP proteins, the Nineteen Complex (NTC), and second-step splicing factors, this complex closely resembles in vitro purified mammalian C complex. The density map reveals an asymmetric particle, approximately 30 x 20 x 18 nm in size, which is composed of distinct domains that contact each other at the center of the complex.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Arrested yeast splicing complexes indicate stepwise snRNP recruitment during in vivo spliceosome assembly.

Pre-mRNA splicing is catalyzed by the spliceosome, a macromolecular machine dedicated to intron removal and exon ligation. Despite an abundance of in vitro information and a small number of in vivo studies, the pathway of yeast (Saccharomyces cerevisiae) in vivo spliceosome assembly remains uncertain. To address this situation, we combined in vivo depletions of U1, U2, or U5 snRNAs with chromat...

متن کامل

Genetic depletion indicates a late role for U5 snRNP during in vitro spliceosome assembly.

The pre-mRNA splicing pathway is highly conserved from yeast (S. cerevisiae) to mammals. Of the four snRNPs involved in splicing three (U1, U2 and U4/U6) have been shown to be essential for in vitro splicing. To examine the remaining snRNP, we utilized our previously described genetic procedures (Seraphin and Rosbash, 1989) to prepare yeast extracts depleted of U5 snRNP. The results show that U...

متن کامل

A novel yeast U2 snRNP protein, Snu17p, is required for the first catalytic step of splicing and for progression of spliceosome assembly.

We have isolated and microsequenced Snu17p, a novel yeast protein with a predicted molecular mass of 17 kDa that contains an RNA recognition motif. We demonstrate that Snu17p binds specifically to the U2 small nuclear ribonucleoprotein (snRNP) and that it is part of the spliceosome, since the pre-mRNA and the lariat-exon 2 are specifically coprecipitated with Snu17p. Although the SNU17 gene is ...

متن کامل

U4/U5/U6 snRNP recognizes the 5' splice site in the absence of U2 snRNP.

Using an in vitro system in which a 5' splice site (5'SS) RNA oligo (AAG decreases GUAAGUAdT) is capable of inducing formation of U2/U4/U5/U6 snRNP complex we show that this oligo specifically binds to U4/U5/U6 snRNP and cross-links to U6 snRNA in the absence of U2 snRNP. Moreover, 5'SS RNA oligo bound to U4/U5/U6 snRNP is chased to U2/U4/U5/U6 snRNP complex upon addition of U2 snRNP. Recogniti...

متن کامل

The network of protein-protein interactions within the human U4/U6.U5 tri-snRNP.

The human 25S U4/U6.U5 tri-snRNP is a major building block of the U2-type spliceosome and contains, in addition to the U4, U6, and U5 snRNAs, at least 30 distinct proteins. To learn more about the molecular architecture of the tri-snRNP, we have investigated interactions between tri-snRNP proteins using the yeast two-hybrid assay and in vitro binding assays, and, in addition, have identified di...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 104 9  شماره 

صفحات  -

تاریخ انتشار 2007